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ABSTRACT
Visualization is an effective way to understand the behavior
of a sound field. There are several methods for such obser-
vation including optical measurement technique which en-
ables a non-destructive acoustical observation by detecting
density variation of the medium. For audible sound propa-
gating through the air, however, smallness of the variation re-
quires high sensitivity of the measuring system that causes
problematic noise contamination. In this paper, a method
for reconstructing two-dimensional audible sound fields from
noisy optical observation is proposed.

Index Terms— Sound field visualization, sparse approx-
imation, Kirchhoff–Helmholtz integral equation, convex op-
timization.

1. INTRODUCTION

Understanding the behavior of a sound field is one of the most
important tasks for many acousticians. For this purpose, one
highly effective way is to visualize it.

A microphone array is the standard choice for such obser-
vation. However, it is effortful to obtain detailed information
over a broad area. In addition, the presence of measuring in-
struments inside a sound field changes the field itself.

As the powerful alternative, optical measurement meth-
ods, which enable a contactless non-destructive acoustical ob-
servation, are studied for some decades mainly in the field of
ultrasonic and underwater acoustics [1,2]. Roughly speaking,
these methods detect acoustical information through density
variation of a medium caused by sound. Ordinary situation
for radiating ultrasonic and underwater sound enforces rel-
atively high density variation, and thus optical methods are
friendly with those areas.

However, audible sound passing through the air is hard
to detect by optics due to its smallness of the pressure vari-
ation. The fact that only a few articles can be found on this
topic is reflecting the difficulty of the situation [3–16]. Audi-
ble sound requires exceedingly high sensitivity of the optical
system for the detection, which leads to striking noise con-
tamination. Ordinarily, averaging of multiple observations, a
time consuming process, is performed to deal with it.
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In the previous paper [17], we proposed a reconstruction
method for an optically visualized two-dimensional sound
field. It is based on the boundary integral equation (BIE) with
the Helmholtz equation constraint, which may overfit to noisy
data through evanescent components. In order to eliminate
such an unrealistic solution, further assumption is needed.

It is natural to assume that there are few sound sources,
which can be well approximated by point sources, around the
observing region. This assumption leads to a sparse estima-
tion problem which is proved to be highly effective for many
signal processing problems [18,19]. In this paper, a sparse re-
construction method for a noisy two-dimensional sound field
utilizing BIE and point sound sources is proposed.

2. OPTICAL OBSERVATION OF A SOUND FIELD

In the linear acoustics, the refractive index of the air n can be
approximated as a function of the sound pressure p:

n = n0 +
n0 − 1

γp0
p, (1)

where n0 and p0 are the refractive index and the pressure un-
der standard atmospheric conditions, and γ is the specific heat
ratio. Therefore, measuring the refractive index of the air, us-
ing optical measurement devices, enable us to know the sound
pressure at the corresponding points in a contactless way.

Let us assume that a measuring light beam is passing in
the x3 direction. Then, for instance, a laser Doppler vibrom-
eter (LDV) [3, 12] measures phase ϕ of the measuring light
beam, which contains information of the refractive index in
the form

ϕ = k0

∫
n dx3, (2)

where k0 is the wave number of the light in vacuum. For
another example, the Schlieren method [15] can measure the
light deflection angle εj in the xj (j = 1, 2) direction, which
corresponds to the gradient of the refractive index as

εj =
1

n0

∫
∂n

∂xj
dx3. (3)

Thus, it is able to measure the sound pressure or the particle
velocity of a sound field from these optical methods. There
are several other methods utilizing different optical phenom-
ena such as diffraction [9, 10], and back-scattering [20].



3. OPTICALLY VISUALIZED SOUND FIELD
RECONSTRUCTION

As in the previous section, the optical methods enables a
contactless acoustical measurement. However, quantitative
assessment using these methods is relatively difficult for the
following reasons: (1) measured quantity is integrated along
the light beam that conceals point-wise information; and (2)
sound related variation of the refractive index is quite small
comparing to other phenomena such as thermal fluid that
leads to severe noise contamination. In this paper, we will
focus on the latter problem for better visualization.

3.1. Helmholtz equation and its boundary integral form

Let us assume that a two-dimensional visualized sound field
in the observing region Ω is governed by the homogeneous
Helmholtz equation:(

△+ k2
)
u(x, ω) = 0, (4)

where x ∈ Ω ⊂ R2, △ =
∑
j ∂

2/∂x2j , k = ω/c is the
wave number, ω is the angular frequency, and c is the speed
of sound. Its boundary integral form is obtained as

u(x) =

∫
∂Ω

[
Φ(x, y)

∂u(y)

∂νy
− ∂Φ(x, y)

∂νy
u(y)

]
dS(y), (5)

where ∂Ω is the boundary of Ω, y ∈ ∂Ω, νy is an outward-
pointing unit normal vector at y,

Φ(x, y) =
i

4
H

(1)
0 (k|x− y|) (6)

is the fundamental solution for the two-dimensional Helmholtz
equation, | · | is the Euclidean distance, i =

√
−1, and H(1)

0

is the Hankel function of the first kind of order 0. We omitted
the symbol ω from Eq. (5) as u(x) = u(x, ω) for ease. Note
that the solution u(x, ω) can be converted to the time domain
solution u(x, t) using the (inverse) Fourier transform.

3.2. Least squares formulation of the previous work [17]

Let Eq. (5) be shortly represented by the integral operator K
as u(x) = (Ku)(x). Then the method in the previous paper
[17] can be written as

minimize
u

∑
m

∣∣ p(xm)− (Ku)(xm)
∣∣2

subject to
(
△+ k2

)
u(y) = 0

(7)

where p(xm) is the measured data at xm. This boundary
condition estimation problem utilized the BIE as a physical
model to fit in the data in the sense of minimum square er-
ror. The ill-posedness of the problem was reduced by the
Helmholtz equation constraint which requires the solution to
be a sound. However, this constraint cannot restrict the solu-
tion space to the subspace where the actual sound field lies.
While the BIE assumes that no sound source exists inside Ω,
the Helmholtz equation constraining u at ∂Ω does not.

3.3. Subspace where the true solution lies

The true boundary condition can be represented as

u(y) =

∫
R2\B(o;a)

C(z)H
(1)
0 (k|y − z|) dz, (8)

∂u(y)

∂νy
=

∫
R2\B(o;a)

k C(z)H
(1)
1 (k|y − z|) ∂|y − z|

∂νy
dz, (9)

where C is a complex coefficient depending on the position,
a is the radius of a region where any sound source does not
exist, Ω ⊂ B(o; a) ⊂ R2, andB(o; a) is the open ball with ra-
dius a centered at o. Therefore, the estimation problem should
be constrained by Eqs. (8) and (9).

3.4. Proposed method

Assuming that the integrations in Eqs. (8) and (9) can be ap-
proximated well by finite sum, a family of functions

ψn,ℓ(y) = H
(1)
0

(
k
∣∣∣ y − (a+ rℓ0)

[
cos 2πnN
sin 2πn

N

] ∣∣∣ ) (10)

is introduced, where n = 1, 2, . . . , N , and ℓ ∈ I ⊂ Z. This
set of functions represents the boundary condition at the point
y on the boundary ∂Ω generated by each point source.

Discretization of the square error function in Eq. (7) ob-
tains

min
u

∥∥p−Ku
∥∥2
2

(11)

where
p = [ p(x1) p(x2) · · · p(xM )]T ,

K = [ Φ −Φ′ ], Φij = Φ(xi, yj), Φ′
ij =

∂Φ(xi,yj)
∂νyj

,

u = [ ∂u(y1)∂νy1
· · · ∂u(yD)

∂νyD
u(y1) · · · u(yD) ]T , (12)

and ∥ · ∥p denotes ℓp-norm. According to Eqs. (8) and (9), u
should be represented by a linear combination of ψn,ℓ as

u = Ψx, (13)
where

Ψ = [DT D′T ]T , Dij = ψnj ,ℓj (yi), D′
ij =

∂ψnj,ℓj
(yi)

∂νyi
,

x = [C1 C2 · · · CNL]T . (14)

Then, we propose a sparse reconstruction method by solving
the following LASSO problem:

min
x

∥∥p−KΨx
∥∥2
2
+ λ∥x∥1, (15)

which can be extended to a method utilizing several bound-
aries

min
x

∑
n

∥∥p−KnΨnx
∥∥2
2
+ λ∥x∥1, (16)

where λ > 0 is a regularization parameter which should be
chosen depending on the noise level of observed data. The
procedure of the proposed method is as follows:



1. Import measured data p and its spatial setting.
2. Create K and Ψ as in Eqs. (12) (14) from Eqs. (6) (10).
3. Solve Eq. (15) or (16) to estimate the coefficients x.
4. Calculate the boundary condition u from estimated x

by Eq. (13) and information at any points inside the
region using Eq. (5).

Note that all vectors and matrices in Eqs. (15) and (16) are
composed of complex valued elements. Thus, a special care
is needed for solving them [21]. In this paper, we utilized the
alternating direction method of multiplier (ADMM) [22] with
real domain mapping [23].

4. EXPERIMENTS

4.1. Numerical simulation

In order to confirm effectiveness of the proposed method, nu-
merical experiments were performed. The simulation setting
is shown in Table 1. ℓ2-norm and ℓ4-norm ball shaped bound-
aries were placed around the visualized sound field sampled
by 16× 16 sampling points as in Fig. 1. ψn,ℓ surrounding the
boundaries are plotted also in the figure.

For the quantitative evaluation, the signal-to-noise ratio
(SNR) of reconstructed sound fields

SNRresult = 10 log10

∑
|p|2∑

|p− p̂|2
, (17)

where p is the sound pressure of the original sound field and
p̂ is the reconstructed sound field, was calculated. The exper-
iments were performed for several observed data whose SNR

SNRdata = 10 log10

∑
|p|2∑
|w|2

, (18)

where w denotes Gaussian noise, was arbitrarily chosen by
adjusting the level of the noise.

Table 1. Simulation condition.

Sampling points 16×16 (= 256) points
Sound source position (−1.5,−2)

# disc. points on boundary 512
Parameters in Eq. (10) N = 150, r0 = 1.5 m

ℓ in Eq. (10) ℓ = −6, . . . , 12

Regularization parameter λ = 2−14

Sampling points interval 0.1 m
Sound speed c = 340 m/s

Spatial Nyquist frequency 1700 Hz
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Fig. 1. Setting of the sampling points (purple), boundaries
(blue, light green), ψn,ℓ (dark green), and a point sound
source (red) for the numerical simulation in Section 4.1. The
boundary written in the blue circle was used for both esti-
mation and reconstruction, while the light green ℓ4-norm ball
shaped boundary was used only for the penalty.
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Fig. 2. Experimental result for the numerical experiment in Section 4.1. Each color represents the SNR of the original data p
which was calculated from 16 × 16 = 256 samples, while the vertical axis represents the SNR of reconstructed sound fields
calculated from 301 × 301 = 90601 samples. (a) shows the result for the conventional method in [17]. (c), and (d) illustrates
the result for the proposed method where the number of boundaries used for the estimation were different. (b) is calculated
for comparison to examine the effect of the boundaries. The vertical red lines indicate the spatial Nyquist frequency of the
sampling points.



Table 2. Measurement condition.

Place for measurement Huge rectangular room
@Waseda Univ. Honjo campus

Loud speaker Yamaha MSP5 studio
Scanning LDV Polytec PSV-300

Measured points 25×25 (= 625) points

1.105 m

4 m

2 m

1 m

speaker

LDV

rigid wall
with reflector

Fig. 3. Measurement setup of the LDV and a sound source.
The wall reflecting the laser emitted from the LDV is made of
cement with more than 30 cm thickness. The size of the room
is 12 m×20 m×6.5 m.

Figure 2 shows the SNR of the reconstruction results ver-
sus frequencies of the sound fields. Each color represents
the SNR of the original data (SNRdata) which was calculated
from 16×16 = 256 sampling points whereas the vertical axis
(SNRresult) was calculated from 301×301 = 90601 recon-
structed points. The red lines indicate the spatial Nyquist fre-
quency for the sampling points obtaining the original data.

From the results, it can be confirmed that the proposed
method can estimate the original field from sparsely observed
data even when the frequencies of the sound field exceed
the spatial Nyquist frequency, while the conventional method
cannot due to the overfitting. It can also be confirmed that
when the number of boundary had increased, the reconstruc-
tion results became slightly better. This phenomena should

be the result of restriction of the degrees of freedom of the
model caused.

In this experiment, the regularization parameter was fixed
to λ = 2−14 for all situations. The result for high SNR data
became better when the parameter was set lower, and that of
low SNR data was better with a higher value of the parameter.
In practice, λ should be tuned for each noise level.

4.2. Application to real data

The proposed method was applied to the real data obtained
by an LDV [3]. The measurement condition and setup are il-
lustrated in Table 2 and Fig. 3. The scanning LDV emitted
a laser beam to each point on the light reflector stuck on the
thick rigid cement wall of the huge (12 m × 20 m × 6.5 m)
rectangular room. The sound source was obtained by multi-
plying four periods of 4000 Hz sinusoidal wave with the Hann
window.

Figure 4 shows the reconstruction result. It is hard to
confirm the pulse from the raw data visually due to mea-
surement noise. On the contrary, the proposed method can
clearly depict the sound. This result indicate that the pro-
posed method can ignore noisy phenomenon which does not
behave as sound physically.

5. CONCLUSION

In this paper, a reconstruction method for an optically visual-
ized sound field was proposed. The proposed method effec-
tively formulates the reconstruction problem as the LASSO
problem with the family of functions whose linear combina-
tion gives a solution lying in the space of the true solutions.

Future works include finding a condition for choosing ap-
propriate r0, N , and I for ψn,ℓ. Moreover, the guideline for
choosing the shape, position, and number of the boundaries
should be investigated. Furthermore, reconstruction of three-
dimensional sound pressure distribution from optically mea-
sured data will be considered.

Fig. 4. Reconstruction of a non-stationary field measured by an LDV. The measurement condition is listed in Table 2. The
sound source was a pulse generated by multiplying 4 periods of 4000 Hz sinusoidal wave with the Hann window. The upper
row shows the original measured data while the lower row shows the reconstructed results obtained by the proposed method.
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