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ABSTRACT

The short-time Fourier transform (STFT) is widely employed in non-
stationary signal analysis, whose property depends on window func-
tions. Instantaneous frequency in STFT, the time-derivative of phase,
is recently applied to many applications including spectrogram re-
assignment. The computation of instantaneous frequency requires
STFT with the window and STFT with the (time-)differential win-
dow, i.e., the computation of instantaneous frequency depends on
both the window function and its time derivative. To obtain the
instantaneous frequency accurately, the sidelobe of frequency re-
sponse of differential window should be reduced because the side-
lobe causes mixing of multiple components. In this paper, we pro-
pose window functions suitable for computing the instantaneous fre-
quency which are designed based on minimizing the sidelobe energy
of the frequency response of the differential window.

Index Terms— Short-time Fourier transform (STFT), instan-
taneous frequency, differential window, discrete prolate spheroidal
sequences (DPSS), spectrogram reassignment.

1. INTRODUCTION

The short-time Fourier transform (STFT) [1] is a time-frequency
analysis method, which is widely employed in nonstationary signal
analysis and processing owing to its simplicity and well-understood
structure [2–20]. The properties of STFT are fully characterized by
a window function. Thus, designing a better window according to
the property of each application is important for improving the per-
formance of the applications.

Many applications of STFT focus on its spectrogram (the
squared magnitude of STFT) since the spectrogram can be eas-
ily interpreted as the energy distribution in the time-frequency
domain [2, 3]. In contrast, the phase (the complex argument) of
STFT had been ignored due to its complicated structure. How-
ever, recently, phase-aware techniques are receiving much inter-
est [4–20]. The phase of STFT is not easy to consider directly
because the observed phase is wrapped into [−π, π). Instead, the
derivative of phase is considered in some applications such as phase
vocoder [4, 5], time-frequency mask estimation [6], spectrogram
reassignment [7–11], synchrosqueezing [12–16] and phase conver-
sion [17–19]. The time-derivative of phase is called the instanta-
neous frequency, and the frequency-derivative of phase is called the
group delay [20].

The standard computation method for the instantaneous fre-
quency was proposed by Auger and Flandrin [8], which computes
the instantaneous frequency by STFT with the window and STFT
with the (time-)differential window (see Sec.2.1). In other words,
the computed instantaneous frequency depends on both the window
and its differential window. The computed instantaneous frequency

is affected by the sidelobes of the frequency response of the dif-
ferential window. For example, the instantaneous frequency of a
signal composed of two sinusoids whose frequencies are sufficiently
different is ideally constant in time on each frequency. However,
in practice, the computed instantaneous frequency is not constant
because the sidelobe causes mixing of multiple components. To
estimate the ideal instantaneous frequency, it is necessary to reduce
the sidelobe of the frequency response of the differential window.

Many window functions have been proposed aiming to obtain a
better STFT from various viewpoints such as frequency responses
[21–26], and the numerical stability in signal processing [27–31].
For reducing the sidelobe of the frequency response of the differen-
tial window, some windows took into account the continuity at the
edges of the windows related to frequency responses of the differ-
ential window [25, 26]. However, no method explicitly considers
the frequency response of the differential window. If the window
function can be designed to reduce sidelobes of the differential win-
dow, the STFT having a good property suitable for instantaneous
frequency computation should be obtained.

Therefore, in this paper, we propose the window functions which
are designed to minimize the sidelobe energy of frequency response
of the time-derivative window for the instantaneous frequency com-
putation. In the proposed method, the problem is formulated as the
maximization of the frequency-domain energy at the low frequency
of the differential window, equivalent to the minimization of side-
lobe energy, similar to Slepian’s maximally-energy concentration
method [22]. Then, its efficient computation method is also pro-
posed. The effectiveness of the proposed method is confirmed by
the instantaneous frequency computation and the application to the
spectrogram reassignment.

2. PRELIMINARIES

In this preliminary section, a simple derivation of the instantaneous
frequency computation formula of STFT [8] and the Slepian window
[22] behind the proposed method are explained.

2.1. Computation of instantaneous frequency using STFT

STFT of a discrete signal x ∈ l2(Z) with a continuous window
function g ∈ L2(R) is defined as [11]

(Vgx)(t, f) =
∑
n∈Z

x[n]g(n− t)e−i2πfn, (1)

where x[n] is nth element of x, t ∈ R, f ∈ [− 1
2
, 1
2
], and i =√

−1. The instantaneous frequency, the time derivative of phase
arg ((Vgx)(t, f)), is given by

∂

∂t
arg ((Vgx)(t, f)) = =

{
1

Vgx
· ∂

∂t
Vgx

}
, (2)
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where ={z} is the imaginary part of z. Here, the time-derivative of
STFT can be rewritten as

∂

∂t
(Vgx)(t, f) = −

∑
n∈Z

x[n]
dg

dt
(n− t)e−i2πfn

= −(Vg′x)(t, f), (3)

where g′ = dg/dt is differential window. Hence, the instantaneous
frequency of STFT can be computed by [8]

∂

∂t
arg ((Vgx)(t, f)) = −=

{
(Vg′x)(t, f)

(Vgx)(t, f)

}
. (4)

According to Eq. (4), the instantaneous frequency can be computed
by STFT using the window function g and its differential window
g′. Hence, the computed instantaneous frequency depends on both
window g and its differential window g′.

2.2. Time-limited sequence with most concentrated spectrum

Slepian considered time-limited sequence whose frequency response
is maximally concentrated in low-frequency band [−W,W ] (W ∈
[0, 1

2
)) [22]. The ratio of the total energy of g ∈ l2(Z) and the

banded energy in [−W,W ] of g is represented as

λ(g) =

∫W

−W
|(Fg)(f)|2df∫ 1

2

− 1
2

|(Fg)(f)|2df
, (5)

where
(Fg)(f) =

∑
n∈Z

g[n]e−i2πfn. (6)

In the case that g is time-limited in N samples, i.e.,

g[n] =

{
v[n] (n = 0, 1, . . . , N − 1)

0 (otherwise)
, (7)

Eq. (5) can be rewritten as

λ(g) = λ(v) =
vTSNv

vTv
, (8)

where v ∈ RN , vT is the transpose of v, and SN ∈ RN×N

is the real-symmetric matrix. The elements of SN are given by
SN [m,n] = sinc(2W (m − n)), where sinc(x) = sin(πx)/πx
if x 6= 0, and sinc(x) = 1 if x = 0. Then, the solution to the
problem of maximizing Eq. (5) is obtained by solving the following
eigenvalue problem:

SNv = λv. (9)

It is known that the eigenvalues of Eq. (9) are nondegenerate and take
values between 0 and 1, i.e., 1 > λ0 > λ1 > · · · > λN−1 > 0. In
addition, the eigenvectors vk corresponding to eigenvalues λk have
the following properties revealed by Slepian [22]:

Orthogonality: vT
j vk = 0 for j 6= k, (10)

Symmetry: vk[n] = (−1)kvk[N − n− 1], (11)

where their norm and signs were determined so that

‖vk‖ = 1,

N−1∑
n=0

vk[n] ≥ 0 for k = 0, 1, . . . , N − 1, (12)

and ‖ · ‖ is the Euclidian norm. The eigenvector v0 corresponding
to the largest eigenvalue λ0 is the solution for the problem of maxi-
mizing Eq. (5) which is referred to the Slepian window.

SN is positive definite, but finding the eigenvalues of SN is ill-
conditioned for numerical computation because the most eigenval-
ues of SN are concentrated close to 1 or 0. In practice, eigenvectors
vk are obtained by solving the following eigenvalue problem instead
of Eq. (9) [32, 33]:

TNv = σv, (13)

where TN ∈ RN×N is the tridiagonal matrix whose elements are

TN [m,n] =


1
2
m(N −m) (n = m− 1)

(N−1
2

−m)2 cos(2πW ) (n = m)
1
2
(m+ 1)(N − 1−m) (n = m+ 1)

0 (|n−m| > 1)

. (14)

TN commutes with SN , i.e., SNTN = TNSN . Thus, the eigen-
vectors of TN are also the eigenvectors of SN . Since TN is known
to have better eigenvalue distribution than SN , the target eigenvector
can be obtained by performing the eigenvalue decomposition to TN .

3. PROPOSED METHOD

In this section, we propose a window designing method to reduce the
influence of the sidelobe of the differential window on the instanta-
neous frequency computation. The proposed window is designed
to minimize the sidelobe energy of the frequency response of the
differential window, which causes mixing of multiple components.
At first, we formulate the optimal window design as the generalized
eigenvalue problem. Then, the efficient computation method of its
solution is introduced.

3.1. Maximally energy-concentrated differential window

To achieve the good frequency response of the differential window,
the energy concentration problem of the differential window is con-
sidered, like the Slepian window. We consider a symmetric window,
as many window designs in the literature [21, 25, 26, 30]. Assuming
the symmetry of the window function, its derivative is always anti-
symmetric. Based on Eq. (8), designing the window function whose
derivative is maximally energy-concentrated is formulated as

maximize
w

zTSNz

zTz

subject to Dw = z

z[n] = −z[N − n− 1]

for n = 0, 1, . . . , N − 1, (15)

where D ∈ RN×N is a finite-dimensional approximation matrix of
the differential operator. To solve this problem, we first solve the
subproblem about z in Eq. (15) and then find w. The first subprob-
lem about z is written as

maximize
z

zTSNz

zTz
subject to Az = 0, (16)

where Az = 0 is the linear equation corresponding to the anti-
symmetric constraint z[n] = −z[N − n − 1] in Eq. (15). After
solving Eq. (16), the objective window w can be obtained by solv-
ing Dw = z. In other words, the window function can be obtained
by estimating the original window w from the discretized differen-
tial window z (whose detail is shown in Sec. 3.2).
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Eq. (16) can be reformulated as a generalized eigenvalue prob-
lem through calculating a basis of the null space of A, but it is
numerically ill-conditioned likewise Eq. (9). Fortunately, the solu-
tion of Eq. (16) can be efficiently computed from the eigenvector
properties of SN . From Eq. (11), v0 is symmetric and v1 is anti-
symmetric. In addition, according to Eq. (10) and the inequality
1 > λ0 > λ1 > · · · > λN−1 > 0, v1 is the solution of

maximize
z

zTSNz

zTz
subject to vT

0 z = 0. (17)

Hence, it is obvious that v1 is the solution of Eq. (16). That is, as
with the conventional Slepian window, the solution of Eq. (16) can
be obtained by the eigenvalue decomposition of TN in Eq. (14).

3.2. Window estimation from its differential window

In the previous subsection, the estimation method of the maximally
energy-concentrated differential window function z = v1 is pro-
posed. However, the estimation problem of the window from the
differential window remained. In this section, the estimation method
of the window from the differential window is introduced.

As calculating the window from the optimized differential win-
dow v1, the spectral integral [11]

w = F∗
M,MB(c)FM,Nv1, (18)

is considered, where FM,N ∈ CM×N is the zero-padded discrete
Fourier transfrom (DFT) with the DFT length M ,

FM,N [m,n] =
1√
M

e−i 2πmn
M , (19)

F∗
M,M is the conjugate transpose of FM,M , BM (c) ∈ CM×M is

the diagonal matrix whose diagonal elements are

B(c)[n, n] =


c n = 0

M/i2πn 0 < n ≤ bM/2c
M/i2π(M − n) bM/2c < n ≤ M − 1

, (20)

b·c is the floor function, and c is an integral constant which cannot
be determined from only the differential window. Hence, c has to be
determined from some point of view in the integrated window.

Denoting w0 = F∗
M,MB(0)FM,Nv1, w is written as w =

w0 + c1M , where 1M ∈ RM is a vector whose elements are all
one. We propose determining c in terms of the maximization of the
mainlobe energy as the Slepian window in Sec. 2.2,

maximize
c>0

λ(w0 + c1M ). (21)

λ(w0 + c1M ) is specifically rewritten using Eq. (8) as

λ(w0 + c1M ) =
wT

0 SMw0 + 21T
MSMw0c+ 1T

MSM1Mc2

wT
0 w0 + 21T

Mw0c+ 1T
M1Mc2

.

As 1T
M1M = M and 1T

Mw0 = 0 from the unitarity of F∗
M,M ,

λ(w0 + c1M ) =
wT

0 SMw0 + 21T
MSMw0c+ 1T

MSM1Mc2

‖w0‖2 +Mc2
.

The necessary condition of λ(c) being maxima is

∂λ

∂c
=
(21T

MSMw0 + 21T
MSM1Mc)

(Mc2 + ‖w0‖2)
(22)

− 2Mc(wT
0 SMw0 + 21T

MSMw0c+ 1T
MSM1Mc2)

(Mc2 + ‖w0‖2)2
= 0.

Since the denominator of Eq. (22), Mc2 + ‖w0‖2 > 0, Eq. (22) can
be rewritten as the equation for c,

M1T
MSMw0c

2 + ac− 1T
MSMw0‖w0‖2 = 0, (23)

where a = (MwT
0 SMw0 − 1T

MSM1M‖w0‖2). Its solutions are

c± =
−a±

√
d

2M1T
MSMw0

, (24)

where d = a2 + 4M(1T
MSMw0)

2‖w0‖2. The two solutions in
Eq. (24) are real because d > 0. Eventually, from

−a−
√
d < 0 < −a+

√
d, (25)

1T
MSMw0 > 0, and the constraint c > 0, c is calculated as

c =
−a+

√
d

2M1T
MSMw0

. (26)

3.3. Summary of the proposed method

In summary, the proposed window w and its derivative v1 are ob-
tained as follows:

Step 1. Apply the eigenvalue decomposition to TN and get the
eigenvector v1 corresponding to the second largest eigen-
value.

Step 2. Compute w0 = F∗
M,MB(0)FM,Nv1.

Step 3. Compute c using Eq. (26).
Step 4. Compute w = w0 + c1M .
Step 5. (optional) Truncate w to be length N .
Step 6. Output the window w and its derivative v1.

Step 5 is an optional step to return the window length from M to
N . It will be presented in the next experimental section that the
differential window of the truncated proposed window also has a
good frequency response.

4. EXPERIMENTS

In this section, the proposed window was compared to the Slepian
windows. First, we compared the frequency responses of the win-
dow functions, then the error of instantaneous frequency compu-
tation using the windows was evaluated. Finally, the windows are
applied to the spectrogram reassignment.

4.1. Frequency responses of proposed windows

At first, the shapes and frequency responses of the proposed window
and their differential window were compared to those of the Slepian
window with two different bandwidths W . In the experiments, the
derivative of the Slepian windows are calculated as [11]

Dw = F∗
M,NGMFM,Nw, (27)

where GM ∈ CM×M is the diagonal matrix whose diagonal ele-
ments are

GM [n, n] =

{
i2πn/M 0 ≤ n ≤ bM/2c
i2π(M − n)/M bM/2c < n ≤ M − 1

. (28)

The length of windows and DFT were set to N = 27 and M = 212.
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Fig. 1. Results of designed windows. Each column shows (from left to right) the window functions, their frequency responses, their differential
windows, and the frequency responses of the differential windows.

Fig. 2. Instantaneous frequency computed by two different win-
dows. The top row shows the spectrogram of a signal composed
of two sinusoids and its ideal instantaneous frequency. The bottom
row shows the errors of the computed instantaneous frequency using
the Slepian window and that using the proposed window.

The proposed windows and the Slepian windows in the cases
of bandwidth W = 0.02, 0.04 are illustrated in Fig. 1. Their fre-
quency responses were normalized so that the maxima are 0 dB. In
both cases of W = 0.02, 0.04, the proposed window has better side-
lobe decays than the Slepian windows although the highest sidelobe
level is slightly higher. Furthermore, the differential windows of the
Slepian windows lose sidelobe decays, while the proposed windows
retain sidelobe decays.

4.2. Evaluation of instantaneous frequency computation

The proposed window was compared with the Slepian window in
terms of the instantaneous frequency computation. The instanta-
neous frequency of a signal composed of two sinusoids, whose spec-
trogram is illustrated in Fig. 2, was computed by using two windows
shown in the top row of Fig. 1. The results of instantaneous fre-
quency computation are summarized in Fig. 2. Note that the ideal in-
stantaneous frequency represents the instantaneous frequency with-
out the effect of sidelobes. It can be seen that the result of the pro-
posed window has less error than that of the Slepian window. These
results suggest that the proposed window reduces the effect of side-
lobes on the instantaneous frequency computation owing to the good
sidelobe decay of its differential window.

Fig. 3. Spectrogram reassignment with two different windows. Each
column shows (from left to right) the spectrograms, the reassigned
spectrograms, the enlargement of the reassigned spectrograms in the
red box. The top and bottom rows show the results for the Slepian
window and the proposed window, respectively.

4.3. Application to spectrogram reassignment

The proposed window was applied to the spectrogram reassignment
of a speech signal, whose sampling frequency was 7418 Hz. The
spectrogram reassignment aims to assign the energy spread by the
window function to the correct position using the instantaneous fre-
quency and group delay [10]. The Slepian window and the proposed
window, with the length N = 28 and the bandwidth W = 0.01,
were used in this experiment. The results are summarized in Fig. 3.

Comparing two reassigned spectrograms in Fig. 3, the reas-
signed spectrogram using the proposed window is sharper than
that of the Slepian window. These results indicate that the proposed
window improves the performance of the spectrogram reassignment.

5. CONCLUSION

In this paper, the window function whose differential window is
maximally energy-concentrated and its efficient computation are
proposed. The proposed window has a good frequency response
in terms of the instantaneous frequency estimation. Future work
includes the generalization of the proposed method to higher-order
derivatives [14–16] and an investigation of its efficient computation.
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