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ABSTRACT

In acoustical signal processing, the importance of modifying the
phase spectrogram has been shown. Recently, model-based phase
recovery which is based on the sinusoidal model has been studied.
Although their effectiveness has been proven, some of them deal
with the phase in inflexible forms owing to the wrapping effect of
phase. In addition, they need much pre-processing, including the
estimation of the instantaneous frequency, which is not easy tasks.
In order to overcome these issues, we propose a novel model-based
phase recovery method which is formulated as an optimization over
complex-valued phases. In the proposed method, the instantaneous
frequency is not handled fixedly, which avoids the prior estimation of
the instantaneous frequency. The technique of optimization on Rie-
mannian manifolds is adopted for efficient computation. The pro-
posed method is validated by noise reduction of audio signals.

Index Terms— Instantaneous frequency, phase derivative, sinu-
soidal modeling, non-convex optimization, gradient descent.

1. INTRODUCTION

Many noise reduction and source separation techniques are formu-
lated in the time-frequency domain in which signals are represented
by complex-valued STFT coefficients. Most of them [1–5] dedicated
to only the modification of the amplitude spectrogram owing to the
difficulty of phase modification such as wrapping effect. That is, the
phase spectrogram remains intact in resynthesizing the signal. Re-
cent studies, however, have proven the importance of the phase mod-
ification in speech enhancement [6–8], source separation [9], and
other applications [10]. The phase spectrograms of harmonic sig-
nals contain distinctive structures, which characterizes their sound.

There exist two approaches for phase recovery: consistency-
based approach and model-based approach. At first, consistency-
based approach considers the redundancy of STFT [11–13]. The
consistency describes the relationship among the STFT coefficients
based on the procedure of STFT. Namely, the consistency-based
approach considers the property of STFT. One of the most popu-
lar consistency-based phase recovery algorithms is the Griffin–Lim
algorithm (GLA) which involves much computation [11]. In order
to circumvent this issue, a recent study utilizes the technique of
optimization on Riemannian manifolds, which is called non-convex
phase cut (NCPC) [14]. Instead of the phase spectrogram, NCPC
considers complex-valued phases represented by the Hadamard
product of complex numbers whose absolute values restricted to 1.
The complex-valued phases construct a Riemannian manifold, and
thus the technique of optimization on Riemannian manifolds can
be utilized for efficient calculation. Moreover, the representation by
complex-valued phases is easy to incorporate with other prior knowl-
edge of phase. However, signals resynthesized by the consistency-
based approach cannot always achieve high performance, because

they do not take into account the property of harmonic signals [15].
Meanwhile, model-based approach utilizes the idea of the si-

nusoidal model which considers the property of a sum of sinusoids
[16–21].The sinusoidal model is compatible with harmonic signals,
and the model-based phase recovery improves perceptual quality
[17]. In the spectrogram of a sum of sinusoids, the phase evolu-
tion can be predictable from the instantaneous frequency of each
sinusoid. In model-based phase recovery, the phase spectrogram is
modified along the time-direction using the prediction of the phase
evolution as described in Section 2.1. One of model-based phase
recovery for audio signals is phase unwrapping (PU), which modi-
fies the unwrapped phase spectrogram along the time-direction de-
terministically [16]. However, PU is implemented in inflexible form
because it deals with the unwrapped phase spectrogram. In addition,
it needs much pre-processing, including the prior estimation of the
instantaneous frequency, which plays important roles. Its estima-
tion error significantly corrupts the performance of phase recovery
although the estimation of the instantaneous frequency is not easy.

In order to circumvent these issues, we propose a new model-
based phase recovery method. We formulate phase recovery as an
optimization over complex-valued phases, and the idea of the sinu-
soidal model is incorporated as the regularization term. Thanks to
this, the proposed method does not need the prior estimation of the
instantaneous frequency, and it is irrespective of the error of the prior
estimation. The technique of optimization on Riemannian mani-
folds is adopted for the proposed formulation, and its effectiveness
is shown in noise reduction of audio signals.

2. PRELIMINARIES

2.1. Model-based phase recovery

Let us denote a discrete signal by x = (x1, . . . , xN )T ∈ RN , and
the STFT of the discrete signal x with a window g ∈ RL by

F (x)ξ,τ =

L−1∑
l=0

xl+aτ gl e2πjξbl/L, (1)

where z̄ is the complex conjugate of z, j =
√
−1, L is the frame

length, a and b is the time and frequency shifting steps, and ξ =
0, 1, . . . ,K and τ = 0, 1, . . . , T denote the frequency and the time
indices, respectively. The sum of sinusoids is given by

xl =

H−1∑
h=0

Eh e2πjfhl+ϕh,0 , (2)

where Eh, fh and ϕh,0 are the amplitude, the frequency, and the
initial phase of hth sinusoid, respectively. The phase spectrogram of
the sum of sinusoids has the following relationship:

ϕξ,τ+1 = ϕξ,τ + 2πavξ,τ , (3)
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Algorithm 1 Phase unwrapping (PU)
Input: onset phase ϕ:,τon , amplitude spctrogram A.
Output: ϕ
while existing harmonic signals do

Peak localization ξh,τ from A:,τ .
Instantaneous frequency estimation fh,τ via QIFFT.
Regions of influence estimation Ih,τ and vξ,τ = fh,τ ∈ Ih,τ .
Phase update: ϕξ,τ+1 = ϕξ,τ + 2πavξ,τ

end while

where vξ,τ is the instantaneous frequency of each bin which is de-
termined from the instantaneous frequencies of the corresponding
sinusoids. This analysis is applicable to harmonic signals such as
speeches and audio signals, and it is often utilized in the phase
vocoders [22, 23]. The model-based phase recovery is based on the
relationship among successive time frames given by Eq. (3) [16].
The phase of the next time frame is predictable from the phase and
the instantaneous frequency of the current time frame. Specifically,
the instantaneous frequency of each bin is inferred from that of
the sinusoids or only from the fundamental frequency. The model-
based phase recovery considers the sinusoidal model, and hence it is
suitable for phase recovery of harmonic signals.

One of model-based phase recoveries for audio signals is PU
[16]. PU recursively modifies the unwrapped phase spectrogram as
satisfying the relationship given by Eq. (3) from the onset τon. The
specific algorithm of PU is shown in Algorithm 1, and the instanta-
neous frequency vξ,τ of each sinusoid is estimated in three steps. In
order to estimate the instantaneous frequency, at first, the instanta-
neous frequency of each sinusoid is approximately estimated from
the location of the amplitude spectrogram peaks. Next, the instanta-
neous frequency of each sinusoid is estimated by QIFFT [24]. The
instantaneous frequency of each bin is estimated from neighbor si-
nusoids with the assumption of the region of influence [22]. The
region of influence means that vξ,τ ≈ fh,τ is satisfied in the hth
region Ih, in which the hth sinusoid is dominant. In [16], the region
of influence is defined by

Ih,τ =

[
Ah,τ fh−1 +Ah−1,τ fh

Ah−1,τ +Ah,τ
,
Ah+1,τ fh +Ah,τ fh+1

Ah,τ +Ah+1,τ

]
, (4)

where A is the amplitude spectrogram and Ah,τ is the approximated
amplitude of the hth sinusoid estimated by the peak localization. Al-
though the above procedure estimates the instantaneous frequency, it
is not exactly accurate. The estimation error significantly corrupts its
performance owing to its deterministic implementation as described
in Algorithm 1.

2.2. Optimization on Riemannian manifolds

In this subsection, we briefly review the gradient descent algorithm
for the optimization on Riemannian manifolds [25,26]. We refer the
readers to [25] for more information about it. Let us consider the
following non-convex optimization:

min
u∈M

F(u), (5)

where M is a Riemannian manifold, and F is an objective function.
The Riemannian gradient gradF(u) is given by the projection of
the unconstrained gradient ∇F(u) onto its tangent space TuM:

gradF(u) = Pu(∇F(u)), (6)

Projection onto the 
tangent space 

Retraction
Tangent space

Riemannian manifold

Fig. 1. An illustration of the Riemannian gradient decent algorithm.

where Pu is the orthogonal projection onto the tangent space at u.
In each iteration of the Riemannian gradient descent algorithm, the
map from the tangent space onto the manifold is needed in order to
maintain the variable on the manifold M. An usable map from the
tangent space onto the manifold is the retraction:

Retu(ν) : TuM ∋ ν 7→ u ∈ M. (7)

Then, the Riemannian gradient decent algorithm is given by

u[k+1] = Retu[k](−η[k]gradF(u[k])), (8)

where η[k] is an appropriate step size, and k is the iteration index.
The procedure of the Riemannian gradient descent algorithm is il-
lustrated in Fig. 1. Its global convergence is guaranteed when the
objective function is smooth, the manifold is compact, and the step
size is appropriate [25].

3. PROPOSED METHOD

In this section, we propose a flexible model-based phase recovery
method which is formulated as an optimization over complex-valued
phases. The proposed method does not need the prior estimation of
the instantaneous frequency, and thus it is irrespective of the estima-
tion error of the instantaneous frequency.

3.1. Proposed formulation

For flexible phase recovery, we do not consider the unwrapped
phases but the complex-valued phases defined by uξ,τ = ejϕξ,τ

where ϕξ,τ is the complex argument of the STFT coefficient. We
introduce a distance between two complex-valued phases:

1− Re

(
uξ,τ

uζ,η

)
= 1− cos(ϕξ,τ − ϕζ,η), (9)

where Re(u) is the real part of u. The right hand side of Eq. (9)
corresponds to the negative log-likelihood associated with the von
Mises distribution.1 The proposed phase recovery is formulated as
the following optimization over complex-valued phases u ∈ CK×T :

min
u

D(u,d) + G(u), s.t. |uξ,τ | = 1, ∀ξ, τ, (10)

where

D(u,d) =
∑
ξ,τ

λξ,τ

{
1− Re

(uξ,τ

dξ,τ

)}
(11)

1The von Mises distribution p(·) is a probability distribution for a peri-
odic variable ϕ whose probability density function given by p(ϕ;µ, κ) =
exp

(
κ cos(ϕ− µ)

)
/2πI0(κ), where µ is a circular mean, κ is a concentra-

tion, and I0(κ) is the modified Bessel function of the first kind of order 0.
The negative log-likelihood can be written as −κ cos(ϕ−µ)+C(κ), which
is related to the right hand side of Eq. (9).
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The proposed model-based phase recovery

: Prior estimated instantaneous frequency     
: Observed phase represented by

Phase unwrapping (PU)

Fig. 2. Illustrations of PU and the proposed phase recovery.

indicates the data fidelity term with the parameter λ ∈ RK×T
+ , d ∈

CK×T is the complex-valued phases of the observed signal,

G(u) =
∑
ξ,τ

γξ,τ

{
1− Re

( uξ,τ

uξ,τ−1

uξ−1,τ−1

uξ−1,τ

)}
,

=
∑
ξ,τ

γξ,τ

{
1− Re

( vξ,τ
vξ−1,τ

)}
(12)

indicates the regularization term with the complex-valued instan-
taneous frequency vξ,τ = uξ,τ/uξ,τ−1, and the parameter γ ∈
RK×T

+ . In Eq. (12), the idea of the sinusoidal model described in
Section 2.1 is incorporated as the regularization term G(u). The reg-
ularization term expects that the instantaneous frequencies of adja-
cent bins along the frequency direction are the same when γξ,τ > 0.

The proposed formulation is based on the same assumption as
PU, the sinusoidal model, but there exist significant advantages:

• The proposed method is formulated as an optimization prob-
lem over complex-valued phases in flexible form. Hence, it
can incorporate knowledge of the target signal through ad-
justable parameters.

• The instantaneous frequency is not treated fixedly, and thus
the prior estimation of the instantaneous frequency is not re-
quired. Hence, the proposed method is irrespective of the
estimation error of the instantaneous frequency.

• The data fidelity is considered at not only the onset but all
time frames.

Comparing to PU, these advantages of the proposed method are il-
lustrated in Fig. 2, where circles are bins considering the data fidelity.
Focusing on circles in Fig. 2, the proposed method considers the data
fidelity at all time frames, while PU considers only at the onset. In
addition, while PU modifies phases deterministically with the esti-
mated instantaneous frequency (the solid allow in the left of Fig. 2),
the proposed method considers minimization of the difference of the
instantaneous frequency among adjacent bins along the frequency
direction (the colored dotted allow in the right of Fig. 2). These
differences enable the proposed method to be more flexible. The pa-
rameters λ and γ play an important role in the proposed method,
and examples of their choice are described later.

3.2. Proposed algorithm for solving Eq. (10)

In this subsection, we introduce the efficient optimization algorithm
for the proposed optimization problem given by Eq. (10). It can be
interpreted as the minimization of the smooth objective function over
complex-valued phases which constructs the Riemannian manifold.
The technique of optimization on Riemannian manifolds is suitable

for solving it efficiently [25]. The Riemannian manifold constructed
by complex-valued phases is given by

M = {u ∈ CK×T : |uξ,τ | = 1, ∀ξ, τ}. (13)

Hence, the proposed method can be reformulated as an uncon-
strained optimization on the Riemannian manifold:

min
u∈M

D(u,d) + G(u). (14)

Thanks to this reformulation, the Riemannian gradient decent al-
gorithm can be applied to solve the proposed optimization prob-
lem. Considering the Riemannian manifold constructed by complex-
valued phases, the tangent space TuM is defined by:

TuM = {ν ∈ CK×T : Re(ν ⊙ u) = 0 ∀ξ, τ}, (15)

where ⊙ is the Hadamard product. The projection onto the tangent
space at u is given by

Pu(υ) = υ − Re(ū⊙ υ)⊙ u, (16)

In addition, the retraction Retu(ν) at u is also given by [25]

Retu(ν) = phase(u+ ν), (17)

where phase(u) = uξ,τ/|uξ,τ | for uξ,τ ̸= 0 and 0 otherwise.
We solve the proposed optimization problem by Riemaniann gra-
dient descent algorithm using the above operators as described in
Section 2.2. We suppose the Riemaniann gradient descent is suit-
able for solving the proposed optimization problem for two reasons.
First, Riemaniann gradient descent algorithm achieves efficient cal-
culation, comparing to the projected gradient algorithm, thanks to
the projection of the unconstrained gradient onto the tangent space.
Second, when the step size is appropriate, its global convergence is
guaranteed because the Riemannian manifold is compact, and the
objective function F = D + P is smooth.

Next, we mention the unconstrained gradient of the objective
function in Eq. (14). The objective function of Eq. (14) is a real
valued-function over complex-valued variables, and thus Wirtinger
calculus is a useful technique for calculation of its gradient [27–29].
In Wirtinger calculus, the objective function F(u) is considered
as a bivariate function F(u, ū), in which two variables, u and ū,
are treated independently. The derivatives ∂F/∂u and ∂F/∂ū are
also calculated independently, and then the unconstrained gradient
is given by −2∂F/∂ū. According to Wirtinger calculus [27], the
partial derivative of the data fidelity term D(u,d) is given by:

∂D
∂ūξ,τ

= λξ,τ
∂

∂ūξ,τ

{
1− Re

(uξ,τ

dξ,τ

)}
= −λξ,τ

2
dξ,τ , (18)

where we utilized the relationship: Re(z) = (z + z̄)/2. The partial
derivative of the regularization term G is also calculated by:

∂G
∂ūξ,τ

=

ξ+1∑
ζ=ξ

τ+1∑
η=τ

γζ,η
∂

∂ūξ,τ

{
1− Re

( uζ,η

uζ,η−1

uζ−1,η−1

uζ−1,η

)}
,

=

ξ+1∑
ζ=ξ

τ+1∑
η=τ

γζ,η
∂Gζ,η

∂ūξ,τ
(19)

where

∂Gξ,τ/∂ūξ,τ = −uξ−1,τuξ,τ−1ūξ−1,τ−1/2, (20)
∂Gξ,τ+1/∂ūξ,τ = −uξ−1,τuξ,τ+1ūξ−1,τ+1/2, (21)
∂Gξ+1,τ/∂ūξ,τ = −uξ+1,τuξ,τ−1ūξ+1,τ−1/2, (22)

∂Gξ+1,τ+1/∂ūξ,τ = −uξ,τ+1uξ+1,τ ūξ+1,τ+1/2. (23)
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Algorithm 2 The proposed model-based phase recovery
Input: complex-valued phases of the observed signal d, the data
fidelity parameter λ, and the regularization parameter γ
Output: u[k+1]

Set u0 = d
for k = 0, 1, . . . do

gradF(u[k]) = ∇F(u[k]) − Re
(
ū[k] ⊙ ∇F(u[k])

)
⊙ u[k]

where ∇F(u[k]) is calculated by sum of Eq. (18) and (19).
Compute a step size η[k] which satisfies the Almijo condition.
Set u[k+1] = phase(u[k] − η[k]gradF(u[k])).

end for

The unconstrained gradient ∇F is calculated from Eq. (18) and (19),
and then the Riemannian gradient is given by:

gradF(u) = ∇F(u)− Re(ū⊙∇F(u))⊙ u. (24)

The Riemannian gradient decent algorithm for the proposed phase
recovery is summarized in Algorithm 2. Thanks to the represen-
tation of the phase spectrogram by the Riemannian manifold, the
technique of optimization on Riemannian manifolds and Wiltinger
calculus gives the efficient solution of the proposed formulation.

3.3. Choice of regularization parameters

In the proposed method, the parameters λ and γ play important
roles. Here we introduce choices of these parameters. At first, we
utilize the amplitude spectrogram A as the data fidelity parameter λ.
That is, the data fidelity at the large amplitude was emphasized. We
assume the amplitude peaks correspond to the sinusoids, and the ob-
served phases are relatively reliable. In contrast, the observed phases
with the small amplitude are modified by the regularization term.

The regularization parameter γ should define the region of in-
fluence introduced in Section 2.1. The instantaneous frequency in
the same region should be same, and thus γξ,τ = γfix ∈ R+ in each
region. Namely, minimizing the regularization term corresponds to
aligning the instantaneous frequency in the same region. In contrast,
we assume that the instantaneous frequency in the different regions
is different. In order to avoid that the instantaneous frequencies of
bins in the different region are aligned, γξ,τ = 0 at the bound of
the regions. In addition, γξ,τ = 0 at the onset, because the instan-
taneous frequency at the onset is difficult to estimate from the phase
spectrogram of the former time frame.

4. NUMERICAL EXPERIMENTS

4.1. Condition

We applied the proposed phase recovery to noise reduction for audio
signals (the clarinet and the piano sound) from songKitamura [30]
corrupted by the additive Gaussian noise, and the Signal-to-Noise
Ratio (SNR) was set to {−10, 0, 10 } dB. The audio signals were
sampled at 44100 Hz, and the STFT was implemented with the Hann
window whose length and the shift length were 1024 samples and
256 samples, respectively. Wiener filter was applied to the spec-
trogram of the noisy signals in the oracle condition (i.e., the am-
plitude spectrogram of the target signal and the noise is utilized
for calculating Wiener filter), and then phase recovery was applied
as post-processing. The performance was evaluated by Signal-to-
Distortion Ratio (SDR) and Overall-Perceptual-Score (OPS) as per-
ceptual quality by the PEASS toolbox [31] where we consider noise
reduction as separation into the audio signal and the noise. As the

Table 1. Comparison of the output SDR and OPS in each condition
for the clarinet sound.

Input SNR -10 [dB] 0 [dB] 10 [dB]
SDR OPS SDR OPS SDR OPS

Wiener 11.5 35.7 18.0 44.3 25.5 37.3
GLA [11] 10.2 39.9 16.6 45.9 24.7 44.9
PU [16] −1.5 20.0 −1.6 31.6 −0.6 34.0

Proposed 11.7 36.9 18.4 44.6 25.8 45.0
Oracle 15.3 42.9 22.2 47.6 29.7 30.2

Table 2. Comparison of the output SDR and OPS in each condition
for the piano sound.

Input SNR -10 [dB] 0 [dB] 10 [dB]
SDR OPS SDR OPS SDR OPS

Wiener 10.9 36.7 17.1 49.1 24.1 48.2
GLA [11] 9.3 36.6 15.9 49.4 23.1 48.4
PU [16] −1.3 20.5 1.1 38.9 1.2 41.6

Proposed 10.9 37.9 17.1 49.4 24.1 48.6
Oracle 14.7 47.2 21.2 40.2 28.2 30.6

target signal is not speech, we utilize OPS for the audio quality as-
sessment instead of the methods for speech (e.g., PESQ).

The proposed method was compared with GLA [11] and PU
[16]. In PU and the proposed method, the region of influence was
estimated by Eq. (4), and the onset was estimated by the temporal
QIFFT following [16]. In PU, the instantaneous frequency was esti-
mated by the QIFFT [24], and the onset phase was set to the oracle
phase instead of estimating the onset phase in order to eliminate the
estimation error of the onset phase. The proposed method and GLA
were iterated 500 times.

4.2. Results of phase recovery

Tables 1 and 2 show the output SDR and OPS achieved by each
algorithm for the clarinet and the piano sounds, respectively. As
shown in Tables 1 and 2, PU resulted in the lowest SDR and OPS
for all conditions. This is because PU takes into account the phase
of the observed signal only at the onset and ignores the phase of the
observed signals without the onset. Thus, the performance is eas-
ily corrupted by the estimation error of the instantaneous frequency
even if the oracle phase is known at the onset. While GLA improves
OPS in some cases, it also could not improve SDR. In contrast, the
proposed method simultaneously improved or maintained SDR and
OPS in all conditions. Specifically, the proposed method achieved
the highest SDR for the clarinet as illustrated in Table 1. On the
other hand, it achieved the highest OPS for the piano as illustrated
in Table 2. The proposed method is formulated in the flexible form,
and it can incorporate with prior knowledge of the target signal.

These results suggest the effectiveness of the proposed flexible
formulation comparing to PU. We suppose the proposed method is
applicable to other tasks including source separation.

5. CONCLUSION

In this paper, we proposed a flexible model-based phase recovery
method which is formulated as an optimization problem. The pro-
posed method does not need the prior estimation of the instantaneous
frequency, and thus it is irrespective of the estimation error of the in-
stantaneous frequency. The advantages of the proposed method were
shown through noise reduction of audio signals. As a future work,
other regularization terms should be considered.
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